Electrical transport properties in single-walled carbon nanotubes networks

K. Snoussi^{a*}, A. Vakhshouri^b, H. Okimoto^c, T. Takenobu^d, Y. Iwasa^e, S. Maruyama^f, K. Hashimoto^{a,b} and Y. Hirayama^{a,b}

^aJST-ERATO Nuclear Spin Electronics Project, 980-0845, Sendai, Japan
^bDepartment of Physics, Tohoku University, 980-8578, Sendai, Japan
^cDepartment of Polymer Science and Engineering, Yamagata University, Yamagata, 980-8577Japan
^dDepartment of Applied Physics, Waseda University, Tokyo 169-8555, Japan
^eSchool of Engineering, The University of Tokyo, Hongo, 113-8656, Japan
^fDepartment of Mechanical Engineering, The University of Tokyo, Hongo, 113-8656, Japan

The electrical transport properties in single-walled carbon nanotube (SWCNT) networks have attracted much attention since the last two decades, because of both their promising applications ^[1] and their intriguing physical properties ^[2]. In this work, we study the temperature (*T*) and the magnetic-field (*B*) dependences of electrical transport properties in single-walled carbon nanotube (SWCNT) networks.

SWCNTs were grown by no-flow alcohol catalytic chemical vapor deposition ^[3] and dispersed in dimethylformamide. They had a bundle diameter $\mathbf{\sigma}$ about 15 nm, as characterized by scanning electron microscopy. They were printed on SiO₂ substrates by an ink-jet method ^[4] and palladium electrodes were subsequently patterned on the devices using a metallic mask and electron beam physical vapor deposition. The two-terminal transport measurements were carried out at T = 0.5 - 295 K using a variable-temperature cryogenic system and a dilution refrigerator.

First, we carefully checked the current-voltage (I-V) characteristics. The measured I-V curves are linear at temperatures down to T = 0.5 K, establishing the ohmic behaviors of both the samples and the electrical contacts. Figure 1 shows the temperature dependence of the resistance (*R*) estimated from the I-V curves: the natural logarithm $\ln(R)$ exhibits a linear relationship with $T^{1/3}$, demonstrating that a 2D Mott variable-range hopping transport ^[5] is dominant in the SWCNT networks throughout the whole measurement temperature range.

Next, we measured the magnetoresistance R(B) at different T. The obtained R(B) curves are plotted in Figure 2. At T = 4.3 and 5 K, R(B) shows a minimum at about 2.5 - 3 T. We found that this minimum drastically moved down towards the low *B*-fields to approximately 0.5 T at T = 1 and 1.6 K. This can be interpreted as the suppression of the quantum-interference effects in the variable-range hopping regime of disordered systems at low $T^{[6]}$.

- [1] S. J. Kang et al., *Nat. Nanotechnol.*, **2** (2007) 230.
- [2] R. Tarkiainen et al., *Phys. Rev. B*, **69** (2004) 033402.
- [3] R. Xiang et al., Jpn. J. Appl. Phys., 47 (2008) 1971.
- [4] H. Okimoto et al., Jpn. J. Appl. Phys., 48 (2009) 06FF03.
- [5] M. Jaiswal et al., J. Phys.: Condens. Matter, 19 (2007) 446006.
- [6] W. Schirmacher, Phys. Rev. B, 41 (1990) 2461.

Figures

Fig. 1. Linear relationship between $\ln(R)$ and $T^{1/3}$ observed in SWCNT networks and indicating a 2D Mott variable-range hopping transport mechanism.

Fig. 2. Magnetoresistance R(B) in single-walled carbon nanotube network samples as a function of the magnetic field B: $\ln[R(B)/R(0)]$ is plotted *versus B* at various temperatures.

